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Abstract — Calculation procedures are proposed in which the Monte Carlo simulation methods can be
conveniently used to compute the view factor matrix entering into Hottel’s zone method. Difficulties caused
by inherent statistical errors can be eliminated by regression. An empirical formula is proposed for the beam
length distribution that enables the total exchange areas to be calculated for any gas absorption model (i.e.
which is not restricted to an exponential absorption law) from the view factors in a diatherm medium. By this
procedure the multiple integrations required to calculate the view factors are uncoupled from the
temperature distributions, so that they need to be calculated only once for a given geometrical configuration.
The usefulness and applicability of the procedure is illustrated by a number of examples.
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NOMENCLATURE

area of surface zone [m?];

coefficient in equation (2);

coefficient matrix in equation (5);
coefficient in equation {(5);

diagonal matrix of dispersions;
hemispherical black body emissive power
of zone i [Wm™?2];

term in equation (19);

view factor from zone i to zone j;

unity vectors;

absorption factor of volume zone i
[m™'];

number of surface zones;

group in the empirical expression for the
beam length distribution model;
number of volume zones;

polynomial in the empirical expression
for the beam length distribution;

non radiative heat flux leaving zone i
(W]

beam length between emission and first
surface contact [m];

direct interchange area from volume g, to
volume g, [m?];
idem from surface s to volume g [m?};

idem from surface s, to surface s, [m?];
absolute temperature {K];

volume [m3];

length of the side of a square [m];
dimensionless beam length = (S

- Smin)/(Smax - Smin);
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geometric mean of y;

total interchange area from zone i to zone
j[m*];

direct interchange area from zone i to
zone j [m?].
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inclination with respect to the direction
normal to the surface of an emitted or
captured beam [rad];

Kronecker delta (= 1ifi = j, = 0ifi # j);
emissivity of surface zone i;

reflectivity;

transmittance along a beam path §;
mean transmittance between zone jand i

emittor;

gas zone;

imaginary surface;
receptor; also real gas;
real surface;

surface zone.

unsmoothed value;
smoothed value.

L INTRODUCTION

THE zonE method for calculating temperature distri-
butions and fluxes in furnaces was introduced by
Hottel [1] and has been developed further by Hottel
and Cobhen [2] and Hottel and Sarofim [3, 4]. In this

method the

space in which the radiation has to be

calculated is divided into a number of surface and
volume elements or zones, each assumed uniform in
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temperature and radiation properties. The zone ap-
proach reduces the set of integro-differential equations
describing the energy transfer into a set of non-linear
algebraic equations. The set of energy balances for the
zones in a closed radiation system in which heat
transfer by conduction and convection — partly also
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computations for real media to be uncoupled from the
variations in temperatures and concentrations in the
gaseous medium. This is done by means of an empiri-
cal expression for the beam length distribution. The
approach enables complex gas absorption laws to be
accounted for.

with the surroundings — is accounted for, can be
written
Z,Z, -Y2,Z, Z,Z, 7,2,
j
2,2, 2,2, -Y2:2, 2z,
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The total exchange area Z;Z; is the ratio of the
radiation energy emitted by zone Z; which is absorbed
by zone Z; (directly or after reflection on other zones)
and of the total hemispherical emissive power of zone
Z; [5]- According to Gebhart’s terminology [6]: the

total exchange area Z,Z; is the overall absorption
factor between an emitter Z; and a receptor Z,,
multiplied by A;¢; for an emitting surface and 4k,V, for
an emitting volume. Z, represents a surface or a
volume zone. Q, represents the non radiative heat flux
leaving Z,.

The set of non linear algebraic equations (1) can be
solved numerically for the temperatures and for the
fluxes by means of Ness’ rapidly converging method
[7], based upon a Newton-Raphson procedure.

The sequence of calculations leading to the total
exchange areas appearing in (1) may be summarized as
follows. To start with, the view factors between
surfaces in a transparent (non absorbing, non scatter-
ing) medium are calculated. The second step is the
calculation of view factors between surfaces and
volumes in a real medium and this requires accounting
for the absorption, which depends upon the gas
composition and the temperature distribution. The
direct exchange areas between surfaces are obtained by
multiplying the view factors by the emitter areas. The
direct exchange areas between surfaces and volumes
and among volumes can be derived from the direct
exchange areas between surfaces, provided that the
imaginary surfaces bounding the volumes are also
accounted for. Finally, the total exchange areas are
calculated by accounting for the radiation received by
the receptor by both direct and reflected radiation,
using the algorithms of Hottel [1].

This paper originated from efforts to computerize
completely advanced methods of furnace design. A
method was developed for avoiding some of the
limitations caused by statistical errors arising from the
applications of the Monte Carlo method to the
calculation of the view factors. Further, an approach is
proposed enabling the use of Monte Carlo methods in

2. CALCULATIONS OF THE VIEW FACTORS
AMONG SURFACES IN A
TRANSPARENT MEDIUM
In a closed radiation system and with a transparent
medium, the radiation emitted from a given surface is
entirely and directly captured by the surrounding
surfaces. To obtain the view factor the fraction of the
total emitted radiation oriented in a given direction
has to be integrated over all the emitting points and
over every beam directed towards the receptor

1
Faoeg |

J cos f3; cos_ﬁl dA.dA
i) Akl

4 ns?

i

Analytical integration is possible in some particular
cases only. Hottel and Cohen [2] applied graphical
methods. The application of Monte Carlo methods is
justified from a certain complexity of the geometry
onwards and has been discussed previously in the
literature [8—11]. Monte Carlo methods can be used as
purely numerical integration techniques for the calcu-
lation of the view factors. Since Monte Carlo in-
tegration involves considerable computations this
type of applications can only be justified in a furnace
simulation when the integrations do not appear inside
an iteration loop.

Further, the number of integrations can be reduced
by introducing maximum symmetry into the zoning of
the geometrical system. Analogous geometrical con-
figurations of zones are then obtained resulting in
simple relations between certain view factors. Some of
the view factors can then be calculated directly from
the others, without necessitating further integration. In
this context, three principles mentioned in Hottel and
Sarofim’s work ‘Radiative Transfer’ [4, p. 59] can be
very useful: the principle of reciprocity, the con-
servation principle and the Yamauti principle [12].

Consider now the matrix F of all the view factors in
the system. Let the basic non zero view factors from
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which the other elements in F can be calculated,
constitute the vector F'. In practice, only linear
dependencies are considered, so that the relations
between the vector and the matrix may be written

Y ali, j,k)F'(k) = F(i, j) 2
k
whereas, from the conservation principle

SFG,j) = 1. 3)

When the view factor associated with a given emitter
are obtained by Monte Carlo integration and they are
subsequently used to calculate other view factors by
means of (2), the conservation equation (3) will not
necessarily hold any more, because of the statistical
errors. Consequently, the view factors will be in-
adequate for the calculation of heat balances for the
zones. Therefore, a regression technique was de-
veloped for adaptirg the Monte Carlo results, F'*,
which are estimates of the real values F', in such a way
that (3) is satisfied. The criterion chosen for this
adaptation was such that the deviation with respect to
F'* was kept minimal. When the vector of adapted
values is represented by F” this criterion can be written

(F — F*)" D(F" — F'*) minimal 4

where D is the diagonal matrix of the reciprocals of the
variances on the Monte Carlo results F'*. These
variances are obtained from

L _Fali-Fy

D(i, i)

n—1

in which n is the number of samples by which the
Monte Carlo results are obtained [13].

The constraints (3) are accounted for in the follow-
ing way. Combine (2) and (3) to express the constraints
solely in terms of the independent view factors F’

BF =1 &3]
where 1 represents a vector with elements 1 and where
the elements of the matrix B are

b(i, k) = Y a(i, j, k),

J

B may contain linearly dependent rows. Therefore,
define a matrix B’ containing the linearly independent
rows of B only. That leads to

BF =1"

The solution of this equation certainly satisfies (5). The
number of rows in B’ is smaller than the number of
columns. Matrix B’ can therefore be decomposed into
two matrices B and B, such that By is a non-singular
square matrix. The vector F’ has to be decomposed
accordingly to yield

BoF; + B, = 1

from which the solution of Fy is obtained

Fo =c¢ + CF] (6)
with
c=B;'1r
C= —-B; !B,

These equations have to be satisfied by the smoothed
values I too. .
A similar decomposition of F'*, F' and D yields a

new form for the objective function
(F5 — F&) " Do(F; - F)
+ (Fy, — F*)"D,(F;, — F}*) = minimal. (7)

Substitution of (6) for the smoothed values F and F
into (7), taking the derivative and equating it to zero
yields the optimal value for F;
Fy = (C'DoC + D,) 7! [D,F* — C"Dy(F — ¢)).
@)
Equation (8), together with (6), yields the smoothed
view factors F; and F, satisfying the constraints (3) or
(5). Notice that the procedure is easily extended to
situations where not only diffuse surface reflections but
also specular reflection is accounted for. In the calcu-
lation procedure of Sarofim and Hottel [3] using p, as

the specular reflection component of the reflectivity,
(3) should be replaced by

Y= p)F(i, ) =1
j
while the elements of B in (5) should be redefined by
b(l7 .]) = Z (1 - pxj)a(ia js k)

J

Example

Consider radiation inside a cube. Since there are 6
surface zones the view factor matrix has 36 elements.
Only 2 of these are independent and non-zero, how-
ever, the view factor between 2 adjacent surfaces
F'(1) and that between 2 opposing sides F'(2). By
independent Monte Carlo integrations a value of 0.190
was obtained for F’*(1) and of 0.195 for F'*(2). Each
surface has one opposing surface and 4 adjacent
surfaces. Obviously, (3) does not hold for the un-
corrected values

F™*(2) + 4F*(1) = 0.955 # 1.

In this example (5) written for the smoothed values has
the following form:

Fy|
F@)|

—_ = e b e s

LR~ T S
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In this case
B =|4 1]

so that, with
Fo=|FQ)|;F =|FQ)

; e=|1

;C=|—4|.
Equation (6) becomes

Fo = 1—4F,
and (7)

F) = [D,F* — 4D, (Fo* - 1)}/[16D, + D,].

Assuming D, = D, then leads to

F'(1) = 0.2006

F'(2) = 0.1976
and

FQ)+4F(1) = 1.

It may be concluded that the condition in (3) is met,
while the change of F'* is kept to a minimum. Further,
the adapted values are closer to the exact solution,
which can be found e.g. in [4, p. 50].

2 2 1
F'(2)=—<ln~—+ 8tan‘1——>— 1 = 0.199825
n \/g ﬁ

F'(1) = 025 x (1 — F'(2)) = 0.20004375.

3. VIEW FACTORS AMONG SURFACE
ZONES IN A REAL MEDIUM
The radiation intensity in a wavelength interval in
real media decreases along a beam path because the
gas absorbs energy. This is accounted for by introduc-
ing the transmittance, so that the view factor in a real
medium is written

IJ‘ f r(S)cosﬁ,-cosB,-dA‘dA_ o)
Tty

(Fi = - e

The transmittance depends upon the beam length, but
also upon the temperature and gas composition along
the beam. Edwards et al. [14], Tien and Lowder [15]
and Lin and Greif [16] have developed fundamental
models for the transmittance. For practical situations
only Hottel’s simple law has been used so far [1].

It would be unpractical to recalculate the multiple
integrals in (9) in each iteration used in the solution of
the set of (1), which is non-linear in the temperatures.
To avoid this, the transmittance can be removed out of
the multiple integrals of (9), in other words a mean
value 7;; has to be defined such that

(Fij)r = 1_-'ijFij»

7;; has to account for the beam length distribution but
has to be taken at some average temperature and
composition. The error introduced by this averaging
depends on the size of the zones in which the total
volume is divided or on the importance of the gra-
dients. Mathematically
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S max
T, = [ 1(S)D.D.F.(S)dS (10)

Smm
where D.D.F. is the differential distribution of beam
lengths, i.e. the probability that an arbitrarily chosen
value of beam length lies between § and S + dS.

A large number of Monte Carlo simulations for
various configurations has led us to propose the
following empirical expression for D.D.F.

D.D.F.(y) = N(W)P(y) 1y

where

N Smin

v=
Smax - Smin

is a dimensionless beam length and

yl Z)tjniyl

n!

N(yy=y'*(1 - (12)

Py)=a+by+cy* +dy’ + ... (13)

The form chosen for N(y) was suggested from the
overall characteristics of the simulated D.D.F. N(y)
exhibits a maximum in the interval 0 < y < 1. Further,
it can be shown by de I'Hopital’s rule that N(y) is zero
for y = 0.1t contains only one adjustable parameter, n,
however and this proved to be insufficient.

To provide more flexibility N(y) was multiplied with
the polynomial P(y), which contains a number of
adjustable parameters, a, b, ¢, d,.... For a given
configuration these parameters and also n have to be
determined by fitting (11) to the real distribution. An
estimate for the latter can be obtained simultaneously
with the view factors from the Monte Carlo
simulations.

A practical way of fitting (11) to the ‘real’ distri-
bution is to identify the moments. Those of the ‘real’
distribution are, of course, easily obtained along with
the Monte Carlo simulation of F;;. The moments of
D.D.F.(y) given by (11) are defined by

1
M, = [ YEN(y)P(y)dy. (14)

]

After substitution of N(y) and P(y) (14) becomes

M,=aW, .  + bW, s + W, o3+ dW, s+ ...
(15)

with

Wi=(+ ) t"—(@@+1)t-" (16)

andi=m+1l,m+2m+3,m+4..

To start with, however, the parameter n of N(y) is
determined by approximating the mean beam length y
of the real configuration by the mean of N(y} only.

More precisely, among the N(y, n) leading to a mean
value N close to y, that N(y, n) is retained which has a
value for N just below y. Mathematically : n is taken as
the smallest integer larger than zero satisfying

FRRSyITT 3t = N =W, (17)
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Notice that the mean of N(y) is nothing but M, when
a=landb=c=d=0

The coefficients of the polynomial function q, b, ¢, d,
... are subsequently determined from My, M, M, ....
Of course, M, = 1, since the distribution is norma-
lized, while M, = y. When only the moments of zero
and first order M, and M| are used, an alternate way
can be followed to determine the coefficients of the
polynomial, after proceeding as above for the para-
meter n. In that case a third order polynomial having
one single real root at y = 1 is selected. This constraint,
and M, and N, enable the calculation of 3 out of the 4
coefficients. The resulting polynomial P(y) has three
fixed points: [1,0], {y,, P(y,)] and [y,, P(y,)]. To
calculate y, and y, first the three conditions are written
as

111 a 0 1
w, w, Wy| |b| ={1] -4 |w, (18)
W, W, Wil e j W .

Clearly, a, b and ¢ are linear functions of y and 4.

An additional constraint is required to determine
the fourth coefficient, d. This constraint was derived
from an inspection of the third order polynomial
through the three points determined so far. It is clear
from (11)—(14) that P(y) is positive at least in a range of
values of y. A condition, sufficient to ensure P(y) to be
positive over the entire interval (0, 1), is that P(y)is a
minimum in the point corresponding to the smaller of
the two ordinates P{y,) and P{y,). The coefficient d
then also becomes a linear function of y, the mean
beam length. If j is situated in the interval (0.0489, 1) it
follows from (17) that the adjustable parameter n in
N(y) has to be unity. The condition that P(y) has to be
positive in the open interval 0 < y < 1 is equivalent
with requiring that P(y) has no roots in thatinterval i.e.
that it does not change its sign. This condition yields a
quadratic relation in 7, from which it is derived by
means of elementary algebra that P(y) is positive when
the mean beam length y is comprised between 0.1048
and 0.4668.

When y < 0.0489 the parameter n takes on values
exceeding one and P(y) becomes negative in the
interval (0, 1). In that case the simplified approach is no
longer applicable.

In real configurations the mean beam length is
usually comprised between the above mentioned
limits, however. The next two tests illustrate the possi-
bilities and accuracy of the formula proposed for
the beam length distribution. In both cases the simpli-
fied fitting approach is used.

Test 1

The beam length distribution was generated for two
quite different configurations by means of Monte
Carlo simulation. The interval between the minimum
and the maximum beam length was divided into a
number of increments. The interval to which each
generated beam pertained was determined and this led
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to the frequency distribution D.D.F.(y). The mean
beam length y used in the calculation of the D.D.F.(y)
was also determined from the simulation.

The configurations used in this test are configu-
rations I and I1 of Fig. 1, which obviously have to lead
to quite different beam length distributions. Figures 2
and 3 show the excellent fit of the Monte Carlo
simulated distribution that can be achieved by means
of the proposed expression (11). The deviation is
primarily located in the maximum of the sharp peak of
Fig. 2, but the accuracy of the distribution obtained
from the Monte Carlo simulations for discrete values
of y is also lower in this area.

Test 2

In the second test, view factors calculated from (9),
(10} and (11) are compared with the results of Hottel
and Cohen [2] (Fig. 4) and with direct Monte Carlo
results (8) in Fig. 5. To allow for a comparison with
Hottel and Cohen the gas was assumed to absorb
radiation according to the simple exponential law of
Hottel. In Figures 4 and 5 the view factors are shown as
functions of the product of the gas absorption coef-
ficient and the length of the side of the squares, kX . The
view factors calculated by Hottel and Cohen for
configurations I, I, I1T and 1V of Fig. 1 are compared
in Fig. 4 with the results obtained from (10) which
involves numerical integration of the products of the
transmittance and the beam length distribution. Again
the agreement is excellent. Further configurations
which were tested are those labeled V, VI and VI in
Fig. 1. Although those configurations are rather
special, the results shown in Fig. 5 are also in excellent
agreement with those obtained by means of the Monte
Carlo simulations.

{ Emitter
2 Receptor

dog

F1G. 1. Geometrical configurations for the test cases.
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I

6]

y

F1G. 2. Beam length distribution for configuration I. Broken line: simulated; smooth line: calculated.

4. DIRECT EXCHANGE AREAS

A third step in the calculation of the total exchange
areas is the calculation of the direct exchange areas.
Those between surfaces are obtained by simply mul-
tiplying the view factors by the corresponding emittor
surfaces. To calculate the direct exchange areas be-
tween surface and volume zones, fictitious surfaces
delimiting the gas volumes were introduced. The view
factors towards those fictitious surfaces are also calcu-
lated in the real medium.

A constraint has to be set on the subdivision of the
radiation space into zones: the radiation from a zone
to a volume zone is allowed to intersect each fictitious
surface of the volume zone in one direction only. In
other words: none of the planes tangent to a fictitious
surface is allowed to intersect another zone.

The direct interchange areas can now be calculated
from

(19)

s; represents the fictitious and s; the real surfaces
bounding the volume g. The term .# is unity when the
surface s is bounding g and zero when it is not. ¥’
represents a summation over the surface, through
which the radiation enters the volume g, £ a sum-
mation over the surfaces through which the radiation
leaves g.

ODF

For a given emitting zone (real, fictitious, surface or
volume) it can be decided whether radiation enters or
leaves the fictitious surfaces bounding the volume
zones by drawing a straight line from a point on the
emitter to a point on the fictitious surface and
inspecting whether the line segment is entirely outside
the volume or not.

The direct exchange areas between volumes are
obtained from the same algorithm

919, = Zygls; - z//éﬁl - ngsé-

When both volume and surface zones are gray the gs
are obtained by means of the reciprocity principle

sg =és

5. TOTAL EXCHANGE AREAS

To obtain the total exchange areas Hottel’s pro-
cedure can be followed. The method is restricted to
systems with gray gases and gray surfaces [1,6].
Reflected and transmitted radiation should have the
same spectral wavelength distribution as the incident
radiation. This constraint can be relaxed to a certain
extent by considering the complete spectrum as con-
sisting of a set of spectral bands with gray properties.
The total exchange areas for the different bands can be
summed after weighting them with respect to the

Y

F1G. 3. Beam length distribution for configuration II. Broken line: simulated ; smooth line: calculated.
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02 I

f. oo

0.001-

I I
0 05 |
kX

F1G. 4. View factors for configurations I, II, III and IV. Line:
calculated ; points: results of Hottel and Cohen [2].

relative importance of the radiation intensities in the
bands. As shown already in the section on view factors
in a real medium, a suitably chosen absorption model
can be used in every spectral band.

6. OUTLINE OF CALCULATION OF
TEMPERATURE DISTRIBUTION

The total sequence of calculations of the tempera-
ture distribution in a furnace by means of the zone
method can be summarized as follows (Fig. 6).

After the real and fictitious surface zones have been
defined the independent surface to surface view factors
F" in a diatherm medium, the mean beam length and
the higher order moments M, (k) of the beam length
distribution are determined by Monte Carlo simu-
lation. The remaining surface to surface view factors
are then calculated by the method outlined in Section
2. The corresponding mean beam lengths and the
higher order moments M, (i, j) can also be calculated
from the independent ones using the same relations (2),
but after weighing with respect to the view factors

2 ali, j,k)F (k)M (k) = My, /).
k

kX

F16G. 5. View factors for configurations V, VI and VII. Line:
model ; points: Monte Carlo results.

| Define real andfictitious surface zones |

T

Independent surface— surface view factors,
mean beam lengths in diatherm medium

i

Remaining surface— surface view foctors

f

[ Parameters of beam length distribution function }

f
. )

l Estimation of temperature vector, T
A I
1

[ View factors in absorbing medium ]

i

[ Direct exchange areas ‘

i

[ Total exchange areas l

B ol
1
[ Solution of energy balances for zones l

FIG. 6. Flow diagram for the calculation of the temperature
distribution by means of the zone method.

The next step is the computation of the parameters of
the D.D.F. of the beam length, for each surface to
surface combination. A first estimate of the tempera-
ture vector in the furnace allows the calculation of the
surface to surface view factors in the absorbing
medium, using a suitable gas absorption model. The
corresponding direct exchange areas are then easily
obtained. Next, the remaining direct exchange areas
(surface to volume, volume to surface, volume to
volume) are determined. Then the set of energy
balances (1) are solved for the temperatures and/or
fluxes, by means of a Newton—Raphson routine e.g. if
two subsequent iterations in the inner loop (A in Fig. 6)
lead to identical temperature vectors, within the
required degree of accuracy, the solution of the set of
non-linear equations of (1) is considered to be
achieved. The initial guess of the temperature vector
used in the calculation of the surface to surface view
factors in the absorbing medium has to be improved in
a so-called outer iteration loop (B in Fig. 6). When two
successive iterations in the B-loop agree the final
temperature vector has been obtained.

7. CONCLUSIONS

The calculation procedures that are proposed im-
prove the applicability of Monte Carlo methods to the
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calculation of the total exchange areas entering into
the zone method for furnace design. Inconsistencies
resulting from statistical errors in the view factor
matrix constructed from Monte Carlo results can be
eliminated by a regression procedure. The introduc-
tion of an empirical equation for the beam length
distribution keeps the multiple Monte Carlo in-
tegrations uncoupled from the temperature distri-
butions in the radiation system and allows any absorp-
tion model for gases to be used. The beam length
distributions can be calculated from the moments of
the ‘real’ distribution function obtained by Monte
Carlo simulation. An alternate and simple way for
calculating the beam length distribution is shown to
yield excellent results. The method has been applied in
the simulation of a thermal cracking furnace [17].
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UNE METHODE VIABLE DE ZONAGE UTILISANT LES TECHNIQUES MONTE CARLO
POUR LA SIMULATION DU RAYONNEMENT DANS LES FOURS INDUSTRIELS

Résumé — On propose des procédures de calcul dans lesquelles les méthodes de Monte Carlo peuvent étre
valablement utilisées pour calculer la matrice des facteurs géométriques entrant dans la méthode de Hottel.
Des difficultés causées par des erreurs statistiques inhérentes peuvent étre éliminées par régression. On
propose une formule empirique pour la distribution de la longueur du rayon qui permet le calcul de I'échange
des surfaces pour un modéle quelconque d’absorption du gaz (qui n’est pas limité 4 une loi d’absorption
exponentielle) 4 partir des facteurs géométriques dans un milieu diathermane. Par cette procédure, les
intégrations multiples, nécessaires pour le calcul des facteurs géométriques, sont découplées des distributions
de température, de fagon a les calculer une seule fois pour une configuration géométrique. L'utilité et
'applicabilité de la procédure sont illustrées par plusieurs exemples.

EINE VERBESSERTE ZONEN-METHODE BEI ANWENDUNG DES )
MONTE-CARLO-VERFAHRENS ZUR SIMULATION DER STRAHLUNG IN INDUSTRIEOFEN

Zusammenfassung —Es werden Berechnungsverfahren vorgeschlagen, in denen die Monte-Carlo-
Simulationsmethoden bequem angewandt werden kOnnen, um die Sichtfaktor-Matrix, die in der
Zonenmethode von Hottel auftritt, zu berechnen. Schierigkeiten, die durch statistische Fehler verursacht

werden, konnen mittels
Strahllingenverteilung

Regression elimineirt werden. Eine empirische Formel
vorgeschlagen, mit der

wird fiir die

die gesamten Austauschflichen fiir jedes

Gasabsorptionsmodell (d.h. das nicht auf ein exponentielles Absorptionsgesetz beschriankt ist) aus den

Sichtfaktoren in einem strahlungsdurchldssigen Medium bestimmt werden kénne. Durch dieses Verfahren

werden die mehrfachen Integrationen, die fiir die Berechnung der Sichtfaktoren erforderlich sind, von den

Temperaturvertetlungen entkoppelt, so daf sie nur einmal fiir eine vorgegebene geometrische Konfiguration

bestimmt werden miissen. Die Vorteile in der Anwendung dieser Methode werden durch zahlireiche Beispiele
illustriert.



Monte Carlo techniques and the zone method

VCOBEPIIEHCTBOBAHHBIA 30HAJIBHBINM METO[ C UCIOJL30BAHUMEM METOIA
MOHTE-KAPJIO AJ1s1 MOAEJIMPOBAHUSA U3JIYUYEHMUS B TTPOMBIIIJIEHHBIX NMEYAX

AnnoTaums — [Ipeanoxens cnocobrl pacuéTa, NpUcnocoOJIEHHbIE A HCTOIb30BaHUA MeToa MoHTe-
Kapso ais pacdeta MaTpHibl ko3dduneHTOB 001y4CHHOCTH, BXOAALLEH B 30HATLHBIA MeToa XOTTeNs.
MpucyluHe MeTOdy CTaTUCTHYECKHe OWHOKM MOryT ObITh HCKIIOYEHBI perpeccued. Ilpennoxena
MnupHueckas GOpMysa IUls pacdeTa PacnpencieHHs MIHHBI MyYKa, ¢ NMOMOINBIO KOTOPOH MOXHO
oupesennTh cCyMMapHbie niomaan obmena ana niobolt Mogenu MOrNOWIEHMS B rale (He OrpaHH-
YEHHOH 33KOHOM 3JKCIOHEHHHANBHOrO MOrJOLIEHHA) HAa ocHoBe KOdpduuueHTOB ODaAydeHHOCTH B
nnarepmudeckoli cpenie. Mcnonb3yemsiil METOA TO3BONAACT BLHINOHATL MHOTOKPATHOE HHTETPHPOBAHHE,
HeobxoauMoe ATs pacyera Kod(pduu#eHTOB ODIYYCHHOCTH HE3aBHCHMO OT pacmpelesieHus TeMnepa-
typet. [locneanee, Takum 00pa3oM, MOXHO PacCUMTHLIBATE NHillb OJMH Pa3 [/if JAHHOH reoMeTpHU.
[TpoayKTHBHOCTL W TPaHMIIB! IPHMERHMOCTH METOAA HWITIOCTPHPYIOTCS PA/IOM NPHMEpOS.
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