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Abstract - Calculation procedures are proposed in which the Monte Carlo simulation methods can be 
conveniently used to compute the view factor matrix entering into Hottel’s zone method. Difficulties caused 
by inherent statistical errors can be eliminated by regression. An empirical formula is proposed for the beam 
length distribution that enables the total exchange areas to be calculated for any gas absorption model (i.e. 
which is not restricted to an exponential absorption law) from the view factors in a diatherm medium. By this 
procedure the multiple integrations required to calculate the view factors are uncoupled from the 
temperature distributions, so that they need to be calculated only once for a given geometrical configuration. 

The usefulness and applicability of the procedure is illustrated by a number of examples. 
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NOMENCLATURE Y, geometric mean of y; 

area of surface zone [m’] ; zizj, total interchange area from zone i to zone 
coefficient in equation (2); j [m2] ; 
coefficient matrix in equation (5); 

- 

coefficient in equation (5); 
zizj2 direct interchange area from zone i to 

diagonal matrix of dispersions; 
zone j Cm’]. 

hemispherical black body emissive power Greek symbols 
of zone i [W mm2]; 
term in equation (19); 
view factor from zone i to zone j; 
unity vectors; 
absorption factor of volume zone i 

[m-l]; 
number of surface zones; 
group in the empirical expression for the 
beam length distribution model ; 
number of volume zones; 
polynomial in the empirical expression 
for the beam length distribution ; 
non radiative heat flux leaving zone i 
WI ; 
beam length between emission and first 
surface contact [m] ; 

direct interchange area from volume g, to 
volume g2 [m2] ; 

idem from surface s to volume g [m”] ; 

idem from surface sr to surface s2 [m”] ; 
absolute temperature {K] ; 
volume [m3] ; 
length of the side of a square [m] ; 
dimensionless beam length = (S 

- Smin)/(Smrx - Smin); 
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Subscripts 

c, 
97 
1, 

>, 

s, 

inclination with respect to the direction 
normal to the surface of an emitted or 
captured beam [rad] ; 
Kronecker delta (= 1 if i = j, = 0 if i # j); 

emissivity of surface zone i; 
reflectivity ; 
transmit~nce along a beam path S; 
mean transmittance between zonel and i. 

emittor ; 
gas zone ; 
imaginary surface ; 
receptor; also real gas; 
real surface ; 
surface zone. 

Superscrtpts 
* 
r unsmoothed value; 

smoothed value. 

1. INTRODU~ION 

THE ZONE method for calculating temperature distri- 
butions and fluxes in furnaces was introduced by 
Hottel [l] and has been developed further by Hottel 
and Cohen [2] and Hottel and Sarofim [3,4]. In this 

*Present address: N.V. Sidmar, Pres. J. F. Kennedylaan 53, method the space in which the radiation has to be 

9020 Gent, Belgium. calculated is divided into a number of surface and 
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temperature and radiation properties. The zone ap- computations for real media to be uncoupled from the 
preach reduces the set of integro-differential equations variations in temperatures and concentrations in the 
describing the energy transfer into a set of non-linear gaseous medium. This is done by means of an empiri- 
algebraic equations. The set of energy balances for the cal expression for the beam length distribution, The 
zones in a closed radiation system in which heat approach enables complex gas absorption laws to be 
transfer by conduction and convection ~ partly also accounted for. 
with the surroundings - is accounted for, can be 
written 

d z,z, - cz,zj Z2Zl Z”Zl 
j 

ZlZ2 z2z2 - Cz2zj ZJ2 
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Z,Z” z,z, z,z, - cz,zj 
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= 

Ql 

Q2 

Q. 

(1) 

The total exchange area ZiZj is the ratio of the 
radiation energy emitted by zone Zi which is absorbed 

by zone Zj (directly or after reflection on other zones) 
and of the total hemispherical emissive power of zone 
Zi [5]. According to Gebhart’s terminology [6]: the 

total exchange area ZiZj is the overall absorption 
factor between an emitter Zi and a receptor Z, 
multiplied by Ai+ for an emitting surface and 4k,l/; for 

an emitting volume. Zi represents a surface or a 
volume zone. Qi represents the non radiative heat flux 
leaving Z,. 

The set of non linear algebraic equations (1) can be 

solved numerically for the temperatures and for the 
fluxes by means of Ness’ rapidly converging method 
[7], based upon a Newton-Raphson procedure. 

The sequence of calculations leading to the total 

exchange areas appearing in (1) may be summarized as 
follows. To start with, the view factors between 

surfaces in a transparent (non absorbing, non scatter- 
ing) medium are calculated. The second step is the 
calculation of view factors between surfaces and 
volumes in a real medium and this requires accounting 
for the absorption, which depends upon the gas 
composition and the temperature distribution. The 
direct exchange areas between surfaces are obtained by 
multiplying the view factors by the emitter areas. The 
direct exchange areas between surfaces and volumes 
and among volumes can be derived from the direct 
exchange areas between surfaces, provided that the 
imaginary surfaces bounding the volumes are also 
accounted for. Finally, the total exchange areas are 
calculated by accounting for the radiation received by 
the receptor by both direct and reflected radiation, 
using the algorithms of Hottel [l]. 

This paper originated from efforts to computerize 
completely advanced methods of furnace design. A 
method was developed for avoiding some of the 
limitations caused by statistical errors arising from the 
applications of the Monte Carlo method to the 
calculation of the view factors. Further, an approach is 
proposed enabling the use of Monte Carlo methods in 

2. CALCULATIONS OF THE VIEW FACTORS 
AMONG SURFACES IN A 
TRANSPARENT MEDIUM 

In a closed radiation system and with a transparent 

medium, the radiation emitted from a given surface is 

entirely and directly captured by the surrounding 
surfaces. To obtain the view factor the fraction of the 
total emitted radiation oriented in a given direction 
has to be integrated over all the emitting points and 

over every beam directed towards the receptor 

cos pi cos p. 
----ldAjdAi. 

4, LS 

Analytical integration is possible in some particular 

cases only. Hottel and Cohen [2] applied graphical 

methods. The application of Monte Carlo methods is 
justified from a certain complexity of the geometry 
onwards and has been discussed previously in the 
literature [8- 111. Monte Carlo methods can be used as 
purely numerical integration techniques for the calcu- 
lation of the view factors. Since Monte Carlo in- 
tegration involves considerable computations this 
type of applications can only be justified in a furnace 
simulation when the integrations do not appear inside 
an iteration loop. 

Further, the number of integrations can be reduced 
by introducing maximum symmetry into the zoning of 
the geometrical system. Analogous geometrical con- 
figurations of zones are then obtained resulting in 
simple relations between certain view factors. Some of 
the view factors can then be calculated directly from 
the others, without necessitating further integration. In 
this context, three principles mentioned in Hottel and 
Sarofim’s work ‘Radiative Transfer’ [4, p. 593 can be 
very useful: the principle of reciprocity, the con- 
servation principle and the Yamauti principle [12]. 

Consider now the matrix F of all the view factors in 
the system. Let the basic non zero view factors from 
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which the other elements in F can be calculated, 
constitute the vector F’. In practice, only linear 
dependencies are considered, so that the relations 
between the vector and the matrix may be written 

Ca(i, j, k)F’(k) = F(i, j) 
k 

(2) 

whereas, from the conservation principle 

CF(i, j) = 1. (3) 
1 

When the view factor associated with a given emitter 
are obtained by Monte Carlo integration and they are 
subsequently used to calculate other view factors by 
means of (2), the conservation equation (3) will not 
necessarily hold any more, because of the statistical 
errors. Consequently, the view factors will be in- 
adequate for the calculation of heat balances for the 
zones. Therefore, a regression technique was de- 
veloped for adaptirg the Monte Carlo results, F’*, 
which are estimates of the real values F’, in such a way 
that (3) is satisfied. The criterion chosen for this 
adaptation was such that the deviation with respect to 
F’* was kept minimal. When the vector of adapted 
values is represented by 9’ this criterion can be written 

(@” - F’*)?‘D@’ - F’*) minimal (4) 

where D is the diagonal matrix of the reciprocals of the 
variances on the Monte Carlo results F’*. These 
variances are obtained from 

1 F$[l - F$] 

D(i, i) n-l 

in which n is the number of samples by which the 
Monte Carlo results are obtained [13]. 

The constraints (3) are accounted for in the follow- 
ing way. Combine (2) and (3) to express the constraints 
solely in terms of the independent view factors F’ 

BF’ = 1 (5) 

where 1 represents a vector with elements 1 and where 
the elements of the matrix B are 

b(i, k) = 14, j, k), 
j 

B may contain linearly dependent rows. Therefore, 
define a matrix B’ containing the linearly independent 
rows of B only. That leads to 

B’F’ = 1’. 

The solution of this equation certainly satisfies (5). The 
number of rows in B’ is smaller than the number of 
columns. Matrix B’ can therefore be decomposed into 
two matrices Bb and B;, such that Bb is a non-singular 
square matrix. The vector F’ has to be decomposed 
accordingly to yield 

BbFb + B’,F’, = 1’ 

F’*(2) + 4F’*(l) = 0.955 # 1. 

In this example (5) written for the smoothed values has 
the following form : 

4 1 1 

4 1 1 

4 1 P(1) 1 

E’(2) 
= 

4 1 1 

4 1 1 

4 1 1 

from which the solution of FL is obtained 

Fb = c + CF; (6) 

with 

c = wO- 1 1’ 

c = - Bb_‘B;. 

These equations have to be satisfied by the smoothed 
values P too. 

A similar decomposition of F’*, P’ and D yields a 
new form for the objective function 

(& - F$)=D&, - F;*) 

+ (PI - F;*)TD1(@‘I - F;*) = minimal. (7) 

Substitution of (6) for the smoothed values PI and Pb 
into (7), taking the derivative and equating it to zero 
yields the optimal value for fi; 

I’; = (CTD,C + D,)-’ [D,F;* - CTD,(F;* - c)]. 

(8) 

Equation (8), together with (6), yields the smoothed 
view factors E; and Pb satisfying the constraints (3) or 
(5). Notice that the procedure is easily extended to 
situations where not only diffuse surface reflections but 
also specular reflection is accounted for. In the calcu- 
lation procedure of Sarofim and Hottel[3] using p,, as 

the specular reflection component of the reflectivity, 
(3) should be replaced by 

x(1 - p,j)Ffi,j) = 1 
j 

while the elements of B in (5) should be redefined by 

b(i, j) = x(1 - p,,)a(i, j, k). 
j 

Example 
Consider radiation inside a cube. Since there are 6 

surface zones the view factor matrix has 36 elements. 
Only 2 of these are independent and non-zero, how- 
ever, the view factor between 2 adjacent surfaces 
F’(l) and that between 2 opposing sides F’(2). By 
independent Monte Carlo integrations a value of0.190 
was obtained for F’*(l) and of 0.195 for F’*(2). Each 
surface has one opposing surface and 4 adjacent 
surfaces. Obviously, (3) does not hold for the un- 
corrected values 
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In this case 

B’=14 l/ 

so that, with 

Ob=1~(2)I;~~=IE’(l)I; c=]ll;C=I-41. 

Equation (6) becomes 

i;; = 1 - 46; 

and (7) 

P; = [D,F;* - ~D,(F~* - 1)]/[16~, + or]. 

Assuming D, = D, then leads to 

P( 1) = 0.2006 

p(2) = 0.1976 

and 

P(2) + 4&l) = 1. 

It may be concluded that the condition in (3) is met, 
while the change of F’* is kept to a minimum. Further, 

the adapted values are closer to the exact solution, 
which can be found e.g. in [4, p. 501. 

- 1 = 0.199825 

F’(1) = 0.25 x (1 - F'(2)) = 0.20004375. 

3. VIEW FACTORS AMONG SURFACE 
ZONES IN A REAL MEDIUM 

The radiation intensity in a wavelength interval in 
real media decreases along a beam path because the 

gas absorbs energy. This is accounted for by introduc- 
ing the transmittance, so that the view factor in a real 
medium is written 

tFij)r = t is T(S) COS pi COS pj 
dAj d/t,. (9) 

I AE A, XS 

The transmittance depends upon the beam length, but 

also upon the temperature and gas composition along 
the beam. Edwards et al. [14], Tien and Lowder [15] 

and Lin and Greif [16] have developed fundamental 
models for the transmittance. For practical situations 
only Hottel’s simple law has been used so far [l]. 

It would be unpractical to recalculate the multiple 
integrals in (9) in each iteration used in the solution of 
the set of (l), which is non-linear in the temperatures. 
To avoid this, the transmittance can be removed out of 
the multiple integrals of (9), in other words a mean 
value rij has to be defined such that 

(Fij), = fijFij, 

rij has to account for the beam length distribution but 
has to be taken at some average temperature and 
composition. The error introduced by this averaging 
depends on the size of the zones in which the total 
volume is divided or on the importance of the gra- 
dients. Mathematically 

- i 

sm.,, 
Tij = r(S)D.D.F.(S)dS 

. .%I,,,, 
(10) 

where D.D.F. is the differential distribution of beam 

lengths, i.e. the probability that an arbitrarily chosen 

value of beam length lies between S and S + dS. 
A large number of Monte Carlo simulations for 

various configurations has led us to propose the 
following empirical expression for D.D.F. 

where 

D.D.F.(y) = N(y)P(y) (11) 

s - &ni” 

y = s,,, - S,,” 

is a dimensionless beam length and 

N(y) = yl 2(1 _ g ~)!I’W 
n! 

(12) 

P(y) = a + by + cy’ + dy3 + (13) 

The form chosen for N(y) was suggested from the 
overall characteristics of the simulated D.D.F. N(y) 
exhibits a maximum in the interval 0 < y < 1. Further, 
it can be shown by de 1’Hopital’s rule that N(y) is zero 
for y = 0. It contains only one adjustable parameter, n, 
however and this proved to be insufficient. 

To provide more flexibility N(y) was multiplied with 
the polynomial P(y), which contains a number of 

adjustable parameters, a, b, c. d, For a given 
configuration these parameters and also n have to be 

determined by fitting (11) to the real distribution. An 
estimate for the latter can be obtained simultaneously 

with the view factors from the Monte Carlo 
simulations. 

A practical way of fitting (11) to the ‘real’ distri- 
bution is to identify the moments. Those of the ‘real’ 
distribution are, of course, easily obtained along with 
the Monte Carlo simulation of Fij. The moments of 

D.D.F.(y) given by (11) are defined by 

L 
M, = 

r 
Y”N(Y P(Y) dy. (14) 

I 0 

After substitution of N(y) and P(y) (14) becomes 

M, = aW,+, + bW,+, + cW,+~ + dW,+, + 

(15) 

with 

w=((i+t)-‘-“-(i+ I)-‘-” (16) 

and i = m + 1, m + 2, m + 3, m + 4 
To start with, however, the parameter n of N(y) is 

determined by approximating the mean beam length j 
of the real configuration by the mean of N(y) only. 

More precisely, among the N(y, n) leading to a mean 
value w close to v, that NCy, n) is retained which has a 
value for KJ just below JX Mathematically : n is taken as 
the smallest integer larger than zero satisfying 

y 2 (2,5)-r-” - 33-n = rci = w,. (17) 
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Notice that the mean of N(y) is nothing but M,, when 
a=landb=c=d=O. 

The coefficients of the polynomial function a, b, c, d, 
. . are subsequently determined from MO, M,, MZ,. . . 
Of course, MO = 1, since the distribution is norma- 
lized, while M, = j. When only the moments of zero 
and first order M, and M, are used, an alternate way 
can be followed to determine the coefficients of the 
polynomial, after proceeding as above for the para- 
meter rr. In that case a third order polynomial having 
one single real root at y = 1 is selected. This constraint, 
and M, and N, enable the calculation of 3 out of the 4 
coeficients. The resulting polynomial P(y) has three 

fixed points: [LO], [Y,,PP(Y~)] and [y2,P(y2)]. To 
calculate yr and yz first the three conditions are written 
as 

111 a 

w, w2 fY3 (1st 

w2 w, w4 c 

Clearly, a, b and c are linear functions of ji and d. 
An additional constraint is required to determine 

the fourth coefficient, d. This constraint was derived 
from an inspection of the third order polynomial 
through the three points determined so far. It is clear 
from (1 I)-( 14) that P(y) is positive at least in a range of 
values of y. A condition, sufficient to ensure P(y) to be 
positive over the entire interval (0, 1), is that P(y) is a 
minimum in the point corresponding to the smaller of 
the two ordinates Qy,) and P(y*). The coefficient d 
then also becomes a linear function of y, the mean 
beam length. If j is situated in the interval (0.0489, 1) it 
follows from (17) that the adjustable parameter n in 
N(y) has to be unity. The condition that P(y) has to be 
positive in the open interval 0 < y < 1 is equivalent 
with requiring that P(y) has no roots in that interval i.e. 
that it does not change its sign. This condition yields a 
quadratic relation in j, from which it is derived by 
means ofelementary algebra that P(y) is positive when 
the mean beam length j is comprised between 0.1048 
and 0.4668. 

When j < 0.0489 the parameter n takes on values 
exceeding one and P(y) becomes negative in the 
interval (0,l). In that case the simplified approach is no 
longer applicable. 

In real configurations the mean beam length is 
usually comprised between the above mentioned 
limits, however. The next two tests illustrate the possi- 
bilities and accuracy of the formula proposed for 
the beam length distribution. In both cases the simpli- 
fied fitting approach is used. 

Test 1 
The beam length distribution was generated for two 

quite different configurations by means of Monte 
Carlo simulation. The interval between the minimum 
and the maximum beam length was divided into a 
number of increments. The interval to which each 
generated beam pertained was determined and this led 

W.M.T. 23;3 --, 

to the frequency distribution D.D.F.(y). The mean 
beam length j used in the calculation of the D.D.F.(y) 
was also determined from the simulation. 

The configurations used in this test are configu- 
rations I and II of Fig. 1, which obviously have to lead 
to quite different beam length distributions. Figures 2 
and 3 show the excellent fit of the Monte Carlo 
simulated distribution that can be achieved by means 
of the proposed expression (11). The deviation is 
primarily located in the maximum of the sharp peak of 
Fig. 2, but the accuracy of the distribution obtained 
from the Monte Carlo simulations for discrete values 
of y is also lower in this area. 

Test 2 
In the second test, view factors calculated from (9), 

(10) and (11) are compared with the results of Hottel 
and Cohen [2] (Fig. 4) and with direct Monte Carlo 
results (8) in Fig. 5. To allow for a comparison with 
Hottel and Cohen the gas was assumed to absorb 
radiation according to the simple exponential law of 
Hottel. In Figures 4 and 5 the view factors are shown as 
functions of the product of the gas absorption coef- 
ficient and the length of the side of the squares, kX. The 
view factors calculated by Hottel and Cohen for 
configurations I, II, III and IV of Fig. 1 are compared 
in Fig. 4 with the results obtained from (10) which 
involves numerical integration of the products of the 
transmittance and the beam length distribution. Again 
the agreement is excellent. Further configurations 
which were tested are those labeled V, VI and VII in 
Fig. 1. Although those configurations are rather 
special, the results shown in Fig. 5 are also in excellent 
agreement with those obtained by means of the Monte 
Carlo simulations. 

03 I 1 Emitter 

& 2 Receptor 

FIG. 1. Geometrical configurations for the test cases. 
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FIG. 2. Beam length distribution for configuration I. Broken line: simulated; smooth line : calculated 

4. DIRECT EXCHANGE AREAS 

A third step in the calculation of the total exchange 
areas is the calculation of the direct exchange areas. 

Those between surfaces are obtained by simply mul- 
tiplying the view factors by the corresponding emittor 

surfaces. To calculate the direct exchange areas be- 
tween surface and volume zones, fictitious surfaces 
delimiting the gas volumes were introduced. The view 

factors towards those fictitious surfaces are also calcu- 
lated in the real medium. 

A constraint has to be set on the subdivision of the 

radiation space into zones : the radiation from a zone 
to a volume zone is allowed to intersect each fictitious 

surface of the volume zone in one direction only. In 
other words: none of the planes tangent to a fictitious 
surface is allowed to intersect another zone. 

The direct interchange areas can now be calculated 
from 

sg = .P + C’ss, - C” ss, - c SSR (19) 

s, represents the fictitious and sx the real surfaces 

bounding the volume y. The term .F is unity when the 

surface s is bounding g and zero when it is not. C’ 
represents a summation over the surface, through 
which the radiation enters the volume g, C” a sum- 
mation over the surfaces through which the radiation 
leaves g. 

For a given emitting zone (real, fictitious, surface or 

volume) it can be decided whether radiation enters or 
leaves the fictitious surfaces bounding the volume 

zones by drawing a straight line from a point on the 
emitter to a point on the fictitious surface and 

inspecting whether the line segment is entirely outside 
the volume or not. 

The direct exchange areas between volumes are 

obtained from the same algorithm 

g,g2 = YglS, - Ygls, - zg,s,. 

When both volume and surface zones are gray the gs 

are obtained by means of the reciprocity principle 

sg = gs 

5. TOTAL EXCHANGE AREAS 

To obtain the total exchange areas Hottel’s pro- 

cedure can be followed. The method is restricted to 
systems with gray gases and gray surfaces [1,6]. 

Reflected and transmitted radiation should have the 

same spectral wavelength distribution as the incident 
radiation. This constraint can be relaxed to a certain 

extent by considering the complete spectrum as con- 
sisting of a set of spectral bands with gray properties. 
The total exchange areas for the digerent bands can be 
summed after weighting them with respect to the 

FIG 3. Beam length distribution for configuration II. Broken line : simulated; smooth line : calculated 
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05 
kX 

FIG. 4. View factors for configurations I, II, III and IV. Line: 
calculated ; points: results of Hottel and Cohen [2]. 

relative importance of the radiation intensities in the 
bands. As shown already in the section on view factors 
in a real medium, a suitably chosen absorption model 
can be used in every spectral band. 

6. OUTLINE OF CALCULATION OF 
TEMPERATURE DISTRIBUTION 

The total sequence of calculations of the tempera- 
ture distribution in a furnace by means of the zone 
method can be summarized as follows (Fig. 6). 

After the real and fictitious surface zones have been 
defined the independent surface to surface view factors 
F’ in a diatherm medium, the mean beam length and 
the higher order moments ML(k) of the beam length 
distribution are determined by Monte Carlo simu- 
lation. The remaining surface to surface view factors 
are then calculated by the method outlined in Section 
2. The corresponding mean beam lengths and the 
higher order moments M,(i, j) can also be calculated 
from the independent ones using the same relations (2), 
but after weighing with respect to the view factors 

cu(i, j, k)~(k)~~(k) = M,(i, j). 
k 

0 I 
c1 P 

-0 5’ 

fr [ 

JI------ 

kX 7. CONCLUSIONS 

FIG. 5. View factors for configurations V, VI and VII. Line: 
model; points: Monte Carlo results. 

The calculation procedures that are proposed im- 
prove the applicability of Monte Carlo methods to the 

1 Cefme real and fictitious surface zones I 

Independent surface-surface vtew factors, 

mean beomlengths In diatherm medium 

t 

Remalni~ surface- surface view factors / 

Parameters of beam length dlstributlon function 

t 

A 
Estlmotlon of temperoture vector, 1, 

i 

I View factors in absorbing medium 

t 
Direct exchange areas 

t 
1 

Total exchange areas 

B_ 

Sol&on of energy balances for zones 
I 

t 
Yes 

1r-TKF-j 

FIG. 6. Flow diagram for the calculation of the temperature 
distribution by means of the zone method. 

The next step is the computation of the parameters of 
the D.D.F. of the beam length, for each surface to 
surface combination. A first estimate of the tempera- 
ture vector in the furnace allows the calculation of the 
surface to surface view factors in the absorbing 
medium, using a suitable gas absorption model. The 
corresponding direct exchange areas are then easily 
obtained. Next, the remaining direct exchange areas 
(surface to volume, volume to surface, volume to 
volume) are determined. Then the set of energy 
balances (1) are solved for the temperatures and/or 
fluxes, by means of a Newton-Raphson routine e.g. if 
two subsequent iterations in the inner loop (A in Fig. 6) 
lead to identical temperature vectors, within the 
required degree of accuracy, the solution of the set of 
non-linear equations of (1) is considered to be 
achieved. The initial guess of the temperature vector 
used in the calculation of the surface to surface view 
factors in the absorbing medium has to be improved in 
a so-called outer iteration loop (B in Fig. 6). When two 
successive iterations in the B-loop agree the final 
temperature vector has been obtained. 
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calculation of the total exchange areas entering into 
the zone method for furnace design. Inconsistencies 
resulting from statistical errors in the view factor 
matrix constructed from Monte Carlo results can be 
eliminated by a regression procedure. The introduc- 
tion of an empirical equation for the beam length 
distribution keeps the multiple Monte Carlo in- 
tegrations uncoupled from the temperature distri- 
butions in the radiation system and allows any absorp- 
tion model for gases to be used. The beam length 
distributions can be calculated from the moments of 
the ‘real’ distribution function obtained by Monte 
Carlo simulation. An alternate and simple way for 
calculating the beam length distributjon is shown to 
yield excellent results. The method has been applied in 
the simulation of a thermal cracking furnace [17]. 
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UNE METHODE VIABLE DE ZONAGE UTILISANT LES TECHNIQUES MONTE CARLO 
POUR LA SIMULATION DU RAYONNEMENT DANS LES FOURS INDUSTRIELS 

R&autne - On propose des procedures de calcul dans lesquelles les methodes de Monte Carlo peuvent itre 
valablement utilisees pour calculer la matrice des facteurs geometriques entrant dans la mtthode de Hottel. 
Des difficult& causees par des erreurs statistiques inherentes peuvent &tre Climinees par regression. On 
propose une formule empirique pour la distribution de la longueur du rayon qui permet le calcul de l’ichange 
des surfaces pour un mod&e quelconque d’absorption du gaz (qui n’est pas limite a une loi d’absorption 
exponentielle) i partir des facteurs geometriques dam un milieu diathermane. Par cette procedure, les 
integrations multiples, necessaires pour le calcul des facteurs g~om~triques, sont decouplies des distributions 
de temperature, de faGon a les calculer une settle fois pour une configuration geomitrique. L’utilite et 

l’applicabilite de la procedure sont illustrees par plusieurs exemples. 

EINE VERBESSERTE ZONEN-METHODE BEI ANWENDUNG DES 
MONTE-CARLO-VERFAHRENS ZUR SIMULATION DER STRAHLUNG IN INDUSTRIEOFEN 

Z~mmenf~~ung - Es werden Ber~hnungsverfahren vorgeschlagen, in denen die Monre-Carlo- 
Simulationsmeth~en bequem angewandt werden konnen, urn die Sichtfaktor-Matrix, die in der 
Zonenmethode von Hottet auftritt, zu berechnen. Schierigkeiten, die durch statistische Fehler verursacht 
werden, kiinnen mittels Regression elimineirt werden. Eine empirische Formel wird fur die 
Strahllangenverteilung vorgeschlagen, mit der die gesamten Austauschflachen fur jedes 
Gasabsorptionsmodell (d.h. das nicht auf ein exponentielles Absorptionsgesetz beschrankt ist) aus den 
Sichtfaktoren in einem strahlungsdurchlLssigen Medium bestimmt werden konne. Durch dieses Verfahren 
werden die mehrfachen Integrationen, die fur die Berechnung der Sichtfaktoren erforderlich sind, von den 
Temperaturverteilungen entkoppelt, so dapsie nur einmal fur eine vorgegebene geometrische Konfiguration 
bestimmt werden miissen. Die Vorteife in der Anwendung dieser Methode werden durch zahlreiche Beispiele 

illustriert. 
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YCOBEPUIEHCTBOBAHHbI~ 30HAJIbHbiR METOn C WCIlOJIb30BAHMEM METOAA 
MOHTE-KAPIIO flJI5I MOflEJIWPOBAHMJI M3JIY9EHWi B IlPOMbIIUJIEHHbIX l-IEqAX 

AHHOTauIls- npe~nOxeHbIcUOCo6b1 pWI~Ta.IIpImIOCO6neHHbIennR WCnOJIb30BaHWR MeTOna MOHTe- 

Kapnonna pWU?Ta MaTpUUbIK03#&iI.IHeHTOBO6ny'ieHHOCTU,BXOLWUeii B3OHUlbHbIii MeTOLl XOTTeJlSl. 

~pHCjV.UHe MeTOny CTaTliCTWWCKAe OLUH6KU MOIJ’T 6bITb UCICJIlOYeHbI ~rpeWieii. ~~LlnO~eHa 

3MIIHpJiW%xaR +OpMyna an51 pacreTa paCIlpeLteneHHR LIJlliHbI EIy’tKa, C IIOMOlUblO KOTOpOfi MOXHO 

onpenenwrb cyMMapHble nnowans 06h4eHa mm nm6oG hionena nornomemis r3 ra3e (He orpaHu- 

4eHHOti DBKOHOM 3KC0OHeHUNaJlbHOTO nOr,lOqeH~~) Ha OCHOBe KO3~~~eHTOB 06nyYeHHOCTB 5 

ana-FepMsrecKoiicpene.Ilcnonb3yeM~izMefonno38onaeTsbInonHnTb MH~~~K~TH~ ~Terp~poBaH~e, 

HeO6XO~~M~ NIjlR paCYeTi3 KO3~HUKeHTOB 06~yqeHH~Tn He~B~C~MO O-i paCU~~eneH~K TeMlIepa- 

TypbL Ilocne~see, TaKKM 06pa3oM. ~0xH0 PaCCYHTbIBaTb JlWUIb OmiH pa3 nna LWiHOii reoMeTpee. 

npOflyKTP,BHOCTb I4 rpaHHUbI EpHMeHKMOCTH MeTOXa EiJiJIIOCTpKpyfOTCS pPnOM npXMepOB. 


